Monday, December 13, 2010

Career Advice

A reader of this blog, a student graduating soon, recently asked me for some career advice. Given the active discussion this week in neighboring blogs on the job situation for chemists, I decided to repost the email, slightly modified so as to protect the privacy of the individual and also fixing spelling/grammatical errors. The tackifier footnote isn't technically correct in all the details, but is fine given the context of the present situation.

My career advice is based on three principles: 1) focusing on the fundamental science in any situation 2) keep learning everything you can about ALL AREAS of science (the divisions of physics, chemistry, biology, metallurgy... are all man made and nature ignores them), and 3) be flexible – as was said by Robert Heinlein: "A human being should be able to change a diaper, plan an invasion, butcher a hog, conn a ship, design a building, write a sonnet, balance accounts, build a wall, set a bone, comfort the dying, take orders, give orders, cooperate, act alone, solve equations, analyze a new problem, pitch manure, program a computer, cook a tasty meal, fight efficiently, die gallantly. Specialization is for insects."

I’ve moved around throughout my entire career. In brief: 1 year @ Hercules (BOPP film), 11 years @ 3M (broken down as 5 years in pressure-sensitive adhesives, 2 years in EKG electrodes, 4 years in microbiology products), 1 year @ Conwed Plastics (PP netting), 1 year at Envoy Medical (implantable hearing aids) and 6 years @ Aspen Research (everything under the sun). There is a polymer thread throughout it all, and I was able to make it work by focusing on the fundamentals of polymers in all cases and not worrying about the jargon of any particular industry. For example, if you understand how a tackifier changes the rheology of an adhesive, then you won’t be confused when you discover that adding too much tackifier actually decreases the tack of an adhesive, despite it being called a “tackifier” [*]. I’ve seen people just baffled by that concept because they keep thinking that it’s a tackifier and it should keep making things tacky.

I’d say start in a big company if possible, as they will have resources (equipment, libraries and experts) that you cannot find anywhere else. Also, a big company will allow you to move around internally without major disruptions. Going to a small company is a whole different world as they lack equipment, libraries and experts. This can be overcome, as you can outsource testing and manufacturing, libraries are online and experts (old colleagues) are just a phone call away. Oops, make that a text away (I’m showing my age). Since you already know what can be done by large companies, you are not limited in what you can do at a small company. It just is a little more complicated. Also, instead of being say 1 of 10,000 employees, you are now 1 of 50. When you do well, everybody sees and knows it. (Conversely, when you screw up, everybody sees and knows it.)

Going into management is not something I can give any advice on, other than be aware that it is a 1-way street. If you leave the bench, you can’t go back. There will always be some newly laid-off employee who was working at the bench just last week – how can you expect to compete with that?

[*] In case you are not familiar with tackifiers and rheology, tackifiers are low MW materials with a fairly high Tg. They lower the plateau modulus of the adhesive, thus making it tackier, but at the same time of course, raise the Tg. Since most adhesive bases have such low Tg’s, you can raise the Tg some and there are no problems. But too much tackifier raises the Tg too close to RT and then you start losing the tack.


Materialist said...

Great post! If you wrote a polymer dictionary (or even pamphlet) describing additives at that level of scientific detail I would buy a copy and promote it widely.

Eric F. Brown said...

Your note on tackifier amount reminds me of an oft-repeated phrase of my undergrad analytical chem prof--"if a little is good, more is not necessarily better." (Interestingly enough, this advice applies to emulsifiers as well as tackifiers.)